On Multi-scale Fourier Transform Analysis of Speech Signals
نویسندگان
چکیده
In this paper, we introduce a novel algorithm to perform multi-scale Fourier transform analysis of piecewise stationary signals with application to automatic speech recognition. Such signals are composed of quasi-stationary segments of variable lengths. Therefore, in the proposed algorithm, signals are analyzed with multiple-sized windows. Resulting power spectra are then normalized such that they all have unit energy, followed by entropy computation of each power spectrum. These entropies are further normalized because they are computed over different number of sample points. Amongst these power spectra, the one with the minimum normalized entropy is retained as optimal power spectrum estimate. In experiments with speech signals, it is shown that the proposed multi-scale Fourier transform based features yield an increase in speech recognition performance in various non-stationary noise conditions when compared directly to single fixed scale Fourier transform based features.
منابع مشابه
Comparison of the Wavelet and Short Time Fourier Transforms for Spectral Analysis of Speech Signals
In mixtures of speech signals the energy content of the components of the mixture is important and determine the structure of the mixture. Energy contents of signals are better shown when time-frequency or time-scale planes are used. In this paper we present a comparison of wavelet transform (WT) and short time Fourier Transform (STFT) in spectral analysis of speech signals. We will show in wav...
متن کاملWindowing Effects of Short Time Fourier Transform on Wideband Array Signal Processing Using Maximum Likelihood Estimation
During the last two decades, Maximum Likelihood estimation (ML) has been used to determine Direction Of Arrival (DOA) and signals propagated by the sources, using narrowband array signals. The algorithm fails in the case of wideband signals. As an attempt by the present study to overcome the problem, the array outputs are transformed into narrowband frequency bins, using short time Fourier tran...
متن کاملWindowing Effects of Short Time Fourier Transform on Wideband Array Signal Processing Using Maximum Likelihood Estimation
During the last two decades, Maximum Likelihood estimation (ML) has been used to determine Direction Of Arrival (DOA) and signals propagated by the sources, using narrowband array signals. The algorithm fails in the case of wideband signals. As an attempt by the present study to overcome the problem, the array outputs are transformed into narrowband frequency bins, using short time Fourier tran...
متن کاملDetecting non-stationary signals using fractional Fourier methods
Signal processing methods have been developed over the last 60 years to detect and analyse complicated non-stationary signals, such as speech and seismic activity. The traditional method for analysing such signals is through a spectrogram based on the short-time Fourier transform (STFT). However, the STFT is not ideal since it reflects only the stationary properties contained in any short time-...
متن کاملPathologies cardiac discrimination using the Fast Fourir Transform (FFT) The short time Fourier transforms (STFT) and the Wigner distribution (WD)
This paper is concerned with a synthesis study of the fast Fourier transform (FFT), the short time Fourier transform (STFT and the Wigner distribution (WD) in analysing the phonocardiogram signal (PCG) or heart cardiac sounds. The FFT (Fast Fourier Transform) can provide a basic understanding of the frequency contents of the heart sounds. The STFT is obtained by calculating the Fourier tran...
متن کامل